
SPADE
SOLIDITY
AUDITS

Telegram:
t.me/spadeaudits

Website:
https://spadetech.io

Twitter:
@SpadeAudits

Lil Floki Audit
October 29, 2021

For :
Lil Floki Team



 Disclaimer

Spade Solidity reports are not, nor should be considered, an “endorsement” or 
“disapproval” of any particular project or team. These reports are not, 
nor should be considered, an indication of the economics or value of 
any “product” or “asset” created by any team or project that contracts 
Spade to perform a security review.

Spade Solidity Reports do not provide any warranty or guarantee regarding the 
absolute bug-free nature of the technology analyzed, nor do they
provide any indication of the technologies proprietors, business, business 
model or legal compliance.
 
Spade Solidity Reports should not be used in any way to make decisions around
investment or involvement with any particular project.These reports in no 
way provide investment advice, nor should be leveraged as investment
advice of any sort.

Spade Solidity Reports represent an extensive auditing process intending to help
our customers increase the quality of their code while reducing the high
level of risk presented by cryptographic tokens and blockchain 
technology.

Blockchain technology and cryptographic assets present a high level of 
ongoing risk. Spade Solidity’s position is that each company and individual are 
responsible for their own due diligence and continuous security. Spade Solidity’s 
goal is to help reduce the attack vectors and the high level of variance 
associated with utilizing new and consistently changing technologies, 
and in no way claims any guarantee of security or functionality of the 
technology we agree to analyze.

What is a Spade Solidity report?

A document describing in detail an in depth analysis of a particular 
piece(s) of source code provided to Spade Solidity by a Client.

An organized collection of testing results, analysis and inferences 
made about the structure, implementation and overall best 
practices of a particular piece of source code.

Representation that a Client of Spade Solidity has indeed completed a round 
of auditing with the intention to increase the quality of the company/
product’s IT infrastructure and or source code.



OVERVIEW

Project Name  Lil Floki Audit  

Description Meme Token 

Platform  Binance Smart Chain 

Codebase  Received file  

Commit  NA  

 

Project Summary

Delivery Date  October 29, 2021 

Method of Audit  Static Analysis, Manual Review  

Timeline   Story Points - 32
 

 

Audit Summary

Total Issues  5  

Total Critical  0 

Total High  0 

Total Medium 1  

Total Low  2 

Total Informational  2  

 

Vulnerability Summary



Executive Summary

Lil Floki is the latest token to envelope the BSC space which combines Elon Musk’s 
influential Shiba Inu Puppy called Floki while also rewarding Lil Floki holders with 
$BNB Reward pay-outs.

This strategic decision to call the project Lil Floki was made as Elon Musk, being the
trendsetter that he is, every time he would tweet about this dog it would create 
more hype around the Lil Floki token for our investors.

Tokenomics: 13% Buy/Sell Tax: 1% BNB Rewards to all holders, 5% to Liquidity & 7% to
Marketing/Charity Wallet
 
Our detailed audit methodology was as follows:

Step 1

A manual line-by-line code review to ensure the logic behind each function is 
sound and safe from common attack vectors.

Step 2

Step 3

Simulation of hundreds of thousands of Smart Contract Interactions on a test 
blockchain using a combination of automated test tools and manual testing to 
determine if any security vulnerabilities exist.

Consultation with the project team on the audit report pre-publication to 
implement recommendations and resolve any outstanding issues.



Grading

The following grading structure was used to assess the level of vulnerability 
found within Padswap Smart Contracts:

Threat Level Definition

Critical 
Severe vulnerabilities which compromise the entire
protocol and could result in immediate data 
manipulation or asset loss.  

High
Significant vulnerabilities which compromise 
the functioning of the smart contracts leading to 
possible data manipulation or asset loss.

Medium

Vulnerabilities which if not fixed within in a set 
timescale could compromise the functioning of the 
smart contracts leading to possible data 
manipulation or asset loss.  

Low
Low level vulnerabilities which may or may not 
have an impact on the optimal performance of 
the Smart contract. 

Informational
Issues related to coding best practice which do 
not have any impact on the functionality of the 
Smart Contracts.



Lil Floki Contract on BSC

ID   TITLE  SERVERITY

FLO-001

FLO-002

FLO-003

FLO-004

FLO-005

Volatile code

Volatile code

Volatile code

Volatile code

Volatile code

Informational

Low

Low

Informational

Medium

https://bscscan.com/address/0x3271d12d5ba36b6582fafa029598fe
e0f5f6db35#code



FLO-001

TYPE  SERVERITY  LOCATION 

Volatile Code  Informational  LilFloki.sol  

 

Description:

line 164 -170 function should emit an event. (informational),

 function setFee(uint256 _BNBRewardsFee, uint256 _liquidityFee, 
uint256 _marketingFee) public onlyOwner {
        BNBRewardsFee = _BNBRewardsFee;
        liquidityFee = _liquidityFee;
        marketingFee = _marketingFee;

        totalFees = BNBRewardsFee.add(liquidityFee).add
(marketingFee); // total fee transfer and buy
    }
  
 LilFloki.sol

Suggestion: 

function setFee() should emit an event to let the users knows 
whenever fees is updated,

Resolution status: 

Issue Acknowledged by Lil Floki Team.



FLO-002

TYPE  SERVERITY LOCATION 

Volatile code Informational LilFloki.sol  

 

 

Description:

line 137 : needs to re-exclude AMMs when updating DividendTracker.
(informational)

function updateDividendTracker(address newAddress) public only
Owner {

LilFloki.sol

Suggestion:

function updateDividendTracker() does not exclude already excluded 
automated market maker pair for getting dividend. owner have to 
exclude those automated market maker pairs again.

Resolution status: 

Issue Acknowledged by Lil Floki Team.



 

FLO-003

TYPE  SERVERITY LOCATION 

Volatile code Low  LilFloki.sol  

Description:

line 349 -369 : Mutliple times swapTokensForEth() called in a 
transaction.(low)

if(
            tradingIsEnabled &&
            canSwap &&
            !swapping &&
            !automatedMarketMakerPairs[from] &&
            from != liquidityWallet &&
            to != liquidityWallet
        ) {
            swapping = true;
             uint256 swapTokens = contractTokenBalance.mul(liquidityFee).
div(totalFees);
            swapAndLiquify(swapTokens);
            uint256 marketingTokens = contractTokenBalance.mul
(marketingFee).div(totalFees);
            sendBNBToMarketing(marketingTokens);

            uint256 sellTokens = balanceOf(address(this));
            swapAndSendDividends(sellTokens);
            swapping = false;
        }

LilFloki.sol

Suggestion:

swapAndLiquify(), sendBNBToMarketing(), swapAndSendDividends(), 
calls swapTokensForEth() independently resulting in high transaction 
gas fees.

Resolution status: 

Issue Acknowledged by Lil Floki Team.



FLO-004

TYPE  SERVERITY LOCATION 

Volatile Code  Medium  LilFloki.sol  

 

Description:

line 453-468: Auto LP not locked.(informational)

 function addLiquidity(uint256 tokenAmount, uint256 ethAmount) 
private {
        
        // approve token transfer to cover all possible scenarios
        _approve(address(this), address(uniswapV2Router), 
tokenAmount);

        // add the liquidity
        uniswapV2Router.addLiquidityETH{value: ethAmount}(
            address(this),
            tokenAmount,
            0, // slippage is unavoidable
            0, // slippage is unavoidable
            liquidityWallet,
            block.timestamp
        );
        
    }

LilFloki.sol

Suggestion:

auto LP tokens are sent to liquidity wallet, hence liquidity wallet 
owner can drain liquidity whenever he wishes.

Resolution status: 

Issue Acknowledged by Lil Floki Team.



TYPE  SERVERITY LOCATION 

Volatile code  Low  LilFloki.sol  

 

FLO-005

Description:

line 334,341 : other DEX pair contract should also be exempt from 
max wallet amount and maxSellTransactionAmount (remove 
liquidity condition).(medium/low)

 from != address(uniswapV2Router) && //router -> pair is removing 
liquidity which shouldn't have max
            !_isExcludedFromFees[to] //no max for those excluded from fees
        ) {
            require(amount <= maxSellTransactionAmount, "Sell transfer 
amount exceeds the maxSellTransactionAmount.");
        }
        
        if (from != address(this) && to != address(this)) {
            if (to != uniswapV2Pair
)

LilFloki.sol

Suggestion: 

condition should be modified to support others 
decentralized exchanges also.

Resolution status: 

Issue Acknowledged by Lil Floki Team.



Conclusion

Telegram:
t.me/spadeaudits

Website:
https://spadetech.io

Twitter:
@SpadeAudits

The token contract developed by the Lil Floki team is well written and 
the team appear to have carefully considered the security and 
functionality of their code. The Spade Audit found no critical issues . All 
other issues have been acknowledged by the Lil Floki team. Investors 
should also be aware that the Lil Floki team have privileged access to all 
auto liquidity generated by the contract but they have committed to 
locking this manually for 1 year as it accumulates.

 The Spade Audit team can never give absolute 
guarantees about the security and functionality of any system or 
protocol, but our detailed review of the Lil Floki Bep 20 token contract  
found that it functions as intended. No serious security issues 
were identified.



Appendix

Finding Categories

Gas Optimization
Gas Optimization findings refer to exhibits that do not affect the
 functionality of the code but generate different, more optimal EVM 
opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations
Mathematical Operation exhibits entail findings that relate to mishandling 
of math formulas, such as overflows, incorrect operations etc.

Logical Issue
Logical Issue findings are exhibits that detail a fault in the logic of the 
linked code, such as an incorrect notion on how block.timestamp works.

Control Flow
Control Flow findings concern the access control imposed on functions, 
such as owner-only functions being invoke-able by anyone under certain 
circumstances.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectely 
on certain edge cases that may result in avulnerability.

Data Flow
Data Flow findings describe faults in the way data is handled at rest and in 
memory, such as the result of a structassignment operation affecting an 
in-memory struct rather than an instorage one.

Language Specific
Language Specific findings are issues that would only arise within Solidity, 
i.e. incorrect usage of private or delete .

Telegram:
t.me/spadeaudits

Website:
https://spadetech.io

Twitter:
@SpadeAudits



Coding Style
Coding Style findings usually do not affect the generated byte-code and comment 
on how to make the codebase more legible and as a result easily maintainable.

Inconsistency
Inconsistency findings refer to functions that should seemingly behave similarly yet
contain different code, such as a constructor assignment imposing different require 
statements on the input variables than a setter function.

Magic Numbers
Magic Number findings refer to numeric literals that are expressed in the codebase
in their raw format and should otherwise be specified as constant contract variables
aiding in their legibility and maintainability.

Compiler Error
Compiler Error findings refer to an error in the structure of the code that renders it 
impossible to compile using the specified version of the project.

Dead Code
Code that otherwise does not affect the functionality of the codebase and can be 
safely omitted.

Telegram:
t.me/spadeaudits

Website:
https://spadetech.io

Twitter:
@SpadeAudits


